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Abstract 

In this paper we prove that the Todd class of a simplicial toric variety has a canonical 
expression as a power series in the torus-invariant divisors. Given a resolution of singularities 
corresponding to a nonsingular subdivision of the fan, we give an explicit formula for this power 
series which yields the Todd class. The computational feasibility of this procedure is implied by 
the additional fact that the above formula is compatible with Barvinok decompositions (virtual 
subdivisions) of the cones in the fan. In particular, this gives an algorithm for determining the 
coefficients of the Todd class in polynomial time for fixed dimension. We use this to give a 
polynomial-time algorithm for computing the number of lattice points in a simple lattice polytope 
of fixed dimension, a result first achieved by Barvinok. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 14M25, 52B50, llF20 

1. Introduction 

1.1. Overview 

The Todd class of a toric variety is important both in the theory of lattice polytopes 

and in number theory. The early researchers in the field of toric varieties realized that 

a formula for the Todd class of a toric variety yields directly a formula for the number 

of lattice points in a convex lattice polytope (cf. [4]). On the other hand, it has been 

shown more recently that Dedekind sums and their generalizations appear naturally in 

formulas for the Todd class [2, 3, 8, 12, 131. Our purpose here is to give a canonical 

power series expression for the Todd class of a complete simplicial toric variety. We 

use this expression together with Barvinok’s polynomial time algorithm for finding 

nonsingular subdivisions of cones [l] to give an effective algorithm for computing the 
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coefficients of this power series which is polynomial time in fixed dimension. We show 

how this algorithm may be used to give a polynomial time algorithm for computing 

the number of lattice points in a polytope of fixed dimension, a result first achieved 

in [l]. 

1.2. Toric varieties and lattice points 

A toric variety is an algebraic variety X in which the algebraic torus T = (C*)” 

sits as a dense open subset, such that the action of T on itself extends to all of X. 

Such varieties are classified combinatorially by fans which are collections of cones in 

a lattice. In addition, any lattice polytope (with integral vertices) determines a toric 

variety via the inner normal fan. This establishes a strong link between lattice polytopes 

and algebraic geometry, a link which has been quite fruitful in both directions ever 

since the introduction of toric varieties more than 20 years ago. Discussion of these 

connections as well as an introduction to the subject of toric varieties can be found in 

the books [6, 1 l] or the survey article [4]. 

An example of this link is the relation between counting lattice points in a polytope 

and finding the Todd class of the corresponding toric variety. Given a lattice polytope 

it is natural to ask how many lattice points it contains. On the other hand, as every 

algebraic variety has a naturally defined Todd class [5], one may ask for an expression 

for this characteristic class. A well-known application of the Hirzebruch-Riemann-Roth 

theorem shows that such an expression can be easily translated into an answer to the 

first question of enumerating the lattice points in the given polytope. Much progress 

has been made in the search for expressions for the Todd class of a toric variety, 

including the important work of Morelli [9] as well as the papers cited in Section 1.1, 

which relate the Todd class to classical number-theoretic invariants, Dedekind sums, 

and their generalizations. 

An important subclass of toric varieties is the class of simplicial toric varieties. 

A simplicial toric variety is one for which every cone in the fan is simplicial, that is, 

generated by linearly independent rays. Geometrically, this implies that the variety is 

locally a quotient of affine space by a finite abelian group. It follows that with rational 

coefficients the homology, cohomology and Chow ring of a simplicial toric variety all 

coincide. This ring has an explicit description as a quotient of the Stanley-Reisner ring 

of the fan (the polynomial ring in the rays modulo products of distinct rays which do 

not form a cone of the fan). 

In this paper, we show that the Todd class of a simplicial toric variety has a canonical 

expression as a power series in the rays of the fan. This power series lives naturally in 

the completion of the Stanley-Reisner ring of the fan, which is isomorphic to the equiv- 

ariant cohomology ring of the toric variety. We also give a reciprocity relation which 

expresses the behavior of this power series under subdivisions. By extending these 

relations to the virtual subdivisions considered by Barvinok, and applying Barvinok’s 

polynomial-time subdivision algorithm, we show how to compute the coefficients of 

the above power series in polynomial time if the dimension is fixed. 



J.E. Pommersheim I Journal of Pure and Applied Algebra 117& 118 (1997) 519-533 521 

1.3. A Todd class formula 

To begin, let C be a complete, simplicial fan with corresponding toric variety Xr. 

Let C,i~={pi,... ,pr} be the set of rays of C, and let AZ denote the Stanley-Reisner 

ring 

AL. = Qa[Xl,. . . Jrl, 
I 

with Z equal to the ideal generated by {xi, . . . x;,. ) (pi,, . . . , pi,) 4 C}. 

If r is a power series in xi,. . . ,x1, then modulo I, Y is determined by its restrictions 

r, to the n-dimensional cones c E Zen) defined as follows: If (T = (pi,, . . . , pl,), then set 

r&,, ,...,Xi,)=Y(Yl,...,Yl), 

where yi = Xj if pj is an extreme ray of C-J, and yj = 0 otherwise. 

Theorem 1. Given an n-dimensional lattice N, there is a canonical assignment to 

each n-dimensional simplicial cone a = (~1, . . . , pn) a function t,,(xl,. . .,x,) which is 
. 

a power series w xl,. . .,x, dejined by a rational function of xi,e”I, i = 1,. ,n with 
the following property: For any complete simplicial fan C in N, let tz(xl,. . . ,x1) be 
power series (in variables xi corresponding to the rays pi of Z) whose restriction to 

each cone a E CC,,, is t,. Then for any such fan, the Todd class TdXz is given b,y 
evaluating tz(x, ,...,x)) in the divisor classes {xi=[V(p,)]EA’X~IpiE~‘(1)}. 

The next theorem shows how to compute the t, given a nonsingular subdivision 

of a. First of all, we renormalize the power series t, by defining 

&T(XI 
1 

,..., x,) = (multa)xl _tb(xlr...,Xn). 

Here mult a denotes the multiplicity of the cone a. This is defined as the index of 

the group generated by the primitive elements of the rays of a in the linear sublattice 

a + (-a). (Here this linear sublattice is all of N since a is n-dimensional.) 

Our next theorem states that the s, are additive with appropriate natural changes of 

coordinates. Before stating the theorem, we introduce the matrices which give these 

changes of coordinates: Let a = (PI,. . . , pn) and y = (~1,. . . , 5,) be any two simplicial 

cones in the lattice N. We define A,, to be the n x n matrix whose (i,j) entry is 

(An,y)i,j = (WitPj), 

where WI,. . . , w, is the basis of Hom(N, 62) dual to 71,. . . , z,. 

Theorem 2. Let a = (PI,. . . , p,,) be an n-dimensional simplicial cone in N, and let T be 

any simplicial subdivision of a. Then letting X denote the (column) vector (x1,. . . ,x,,), 
we have 
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If furthermore r is a nonsingular subdivision of a, then the sy above are given by 

S,(Yl,..., Yn) = fi -h i=, 1 - e--yl 

so the above equation gives a formula for the s, as a rational function of exl and 

hence t, is expressed as a rational function of xi, eXX, i = 1,. . . , n. 

1.4. Behavior under Barvinok subdivisions 

While in general it may require the addition of many new rays to desingularize 

a given cone, Barvinok [l] has shown that the situation is different if we allow virtual 

subdivisions. Specifically, he gives a polynomial-time algorithm for constructing a non- 

singular virtual subdivision of polynomial size in the bit complexity of the coordinates 

of the given cone. The next theorem shows that the additivity formula of Theorem 2 

may be adapted to virtual subdivisions as well. This, together with Barvinok’s results, 

yields an algorithm for computing the Todd class which is polynomial time in fixed 

dimension. 

We first establish some notation. If (T = (pi,. . . , pn) is an n-dimensional cone, then 

given any ray po such that ~0,. . ,pn are contained in a half-space of N, we may 

“virtually subdivide” o with respect to p. by replacing cr with the collection 

{ai=(pO ,..., bi ,..., p,)ji=l,.. . , n, and Oi is an n-dimensional cone}. 

For each such i, we define 

1 
6i = 

1 

if (~1 ?...,Pn),(PI ,...,Pi-l,PO,Pi+l,..., p,,) have the same orientation, 

- 1 otherwise. 

Modulo smaller-dimensional cones, we have 

fJ= c 6ioi. 

We may then continue by picking one of the oi and virtually subdividing it with respect 

to a new ray p& and so on. By a virtual subdivision of (T we mean an expression 

0 = C&YlY 

obtained by a finite sequence of such operations. 

We have the following formula expressing to in terms of the ty: 

Theorem 3. Let the notation be as in Theorem 2, except let r be a virtual subdivision 
as above. Then 
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1.5. Finding the Todd class in polynomial time 

The above theorems may be used to give an algorithm for computing the Todd class 

which is polynomial time in fixed dimension. 

Let Xr be a complete, simplicial toric variety of dimension n. In order to compute the 

Todd class of Xz, it suffices to compute the coefficients of tZ in degrees not exceeding 

n because higher-order terms represent zero in the Chow groups (or homology) of Xz. 

We compute these coefficients as follows. 

Algorithm 1. (i) For each n-dimensional cone 0 E Z apply Barvinok’s algorithm to 

find in polynomial time a nonsingular virtual subdivision r which is of polynomial 

size in the bit complexity of the rays defining 0‘. 

(ii) For each n-dimensional cone y of r, use the second equation of Theorem 2 to 

express the power series ty up to order n. 

(iii) The coefficients of t, may then be computed inductively as follows: The virtual 

subdivision r determines a sequence of virtual subdivisions rs = {o}, ri, . . . , r, = r 

where each I’i+i is obtained from r, by the addition of a single ray. Let y be an 

n-dimensional cone of ri, and let yi , . . . , yk be the n-dimensional cones of fi+i into 

which y is subdivided. We now compute the coefficients of tr up to order n from the 

coefficients of the t,+ up to order n using Theorem 3. (More explicitly, we may use 

Lemma 7 which is Theorem 3 in the special case of a virtual subdivision obtained by 

adding a single ray.) 

(iv) After we have computed t, up to order n for each 0 E Cc,), we are done, as all 

the desired coefficients of tz are now determined. 

1.6. Example 

To illustrate the above results, we consider the following very simple example. Let 

N==Z’, and o=(pi,p~), where pi=(l,O), and pz.=(l,n) for some integer n>O. 

Consider the virtual subdivision induced by the ray po = (0,l). Letting cl = (po, ~2) 

and ~2 = (po,p~), this virtual subdivision may be expressed as 0 = o2 - 01. 

To compute t, up to order 2, we will apply the equation of Theorem 3 (or the 

special case, Lemma 7) to obtain 

4T(Xl,X2) = 
Xl 

--toz(~X2,Xl +x2) + 
x1 +x2 

&t,,(nxl,w +x2). 

Note that this equation comes with the guarantee that the right-hand side is actually 

a power series in x1,x2. Further it is clear that the coefficients of t, in any degree may 

be computed easily given the coefficients of t,, and t,, in the same degree. 

Since (~1 and (~2 are both nonsingular, we may use the second equation of Theorem 2 

to get 

trr,(Yo,Y2)=1+~(Yo+Y2)+~(Yo2+Y22)+$Y*Y2+-> 

with a similar expression for t02(y0, yl ). 
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From these equations, we obtain 

t,(xl,x2) = 1 + gx, +x2) + &(.q2 + Q2) + ( +12 + &IX2 f . . . 

The interesting coefficient above, that of 11~x2, actually comes from the classical 

Dedekind sum s( 1,~) (see Section. 1.8 below). 

1.7. Relation to counting lattice points 

As mentioned above, a formula for the Todd class of a toric variety translates directly 

into a formula for the number of lattice points in a lattice polytope. This connection has 

been well understood conceptually for quite some time, and is rather simple compu- 

tationally. For completeness, we will briefly describe the algebraic geometry involved, 

and give a recipe for converting the above Todd class formulas into lattice point 

formulas. 

Given an n-dimensional lattice N, and dual lattice M = Horn (N, Z), we begin with 

any integral convex polytope A in M. Via the inner normal fan, A determines a toric 

variety X4. This variety comes equipped with a canonical line bundle a basis of whose 

sections is given by the lattice points in A. Higher cohomology of this line bundle is 

seen to vanish. Thus, the number of lattice points equals the Euler characteristic of the 

line bundle, which may be computed via Hirzebruch-Riemann-Roth. The necessary 

ingredients for this computation are: (1) the Chem character of the line bundle, which 

turns out to have a nice expression in terms of the volumes of faces of A, and (2) the 

Todd class of the variety X,. 

We now give a recipe for translating our formula for the Todd class of a simplicial 

toric variety into a lattice point formula. Let us assume that A is a simple polytope, 

that is, no more than n facets meet at a vertex. This means that the induced fan C is 

simplicial. We may compute the number of lattice points in A as follows: 

(i) Use the above algorithm to compute the Todd class tz(x,, . . . ,x1) up to degree n. 

This is a polynomial T in the variables Xi which correspond to rays pi of C, and hence 

to facets of the polytope A. 
(ii) Let J be the ideal generated by the set 

Consider T as an element of AZ/J. This ring is a well-known presentation for the Chow 

ring of Xx. Now find a square-free representative for T. This can be accomplished as 

follows: For any monomial of degree at most n which is not square-free, we may use 

an element of J to express this monomial as a sum of terms that are closer to being 

square-free. That is, each new term will involve more of the variables xi with nonzero 

exponent. Proceeding inductively in this way, one arrives at a square-free representative 

for T. 
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(iii) We will next replace each monomial appearing in this square-free expression by 

a rational number. Given a monomial x1 . . ‘xk, we may assume that the corresponding 

cone 0 = (pI,. . . ,pk) is in C, for otherwise this monomial vanishes in Ax. Thus, there 

is a corresponding (n - k)-dimensional face F of A, namely the intersection of the 

facets F 1,. . . ,Fk corresponding to the rays ~1,. . . , pk. Replace x1 . . ’ xk by 

& J’ol(F). 

In this formula, the volumes are computed with respect to the sublattice consisting of 

those points of M lying within the (n - k)-dimensional affine space determined by F. 

That the above recipe yields the number of lattice points is well-known 

(cf. [6, p. 1121). Since the Todd class computation is polynomial time, it is clear 

that the above yields a polynomial time algorithm for computing the number of lattice 

points in a simple lattice polytope when the dimension is fixed. Such an algorithm was 

first given by Barvinok in [l]. 

One can rephrase the above recipe to avoid computation of the volumes of the faces 

of A. To do this, we assume that d is given as the solution to the linear inequalities: 

A = {REM I hd 2 h}. 

With this setup, we give a second formulation of our polynomial-time algorithm for 

computing the number of lattice points, as follows: 

(i) Compute T above, and let C denote exp(x -hixl) truncated to a polynomial 

of degree n. This represents the Chern character of the line bundle associated to A. 

(ii) Let N be the degree n part of the product TC. 

(iii) Choose any vertex of A and let g = (~1,. , pn) be the corresponding cone of Z. 

Choosing any Grabner basis for the ideal J above, we compute the normal forms for 

N and for xl . . x,,. The degree n part of AZ/J is known to be a one-dimensional vector 

space. Therefore, these two normal forms are rational multiples of the same monomial, 

and hence their ratio is a rational number. The number of lattice points is then given 

by this ratio divided by mult cr: 

#(ArlM) = M’4 

VYXl . . .x,,)multa’ 

Again, the correctness of the above algorithm is well-known and follows from the 

discussion in [6, Section 5.31. 

1.8. Relation with previous work 

Theorems 1 and 2 are quite natural extensions of the results of [ 131. In [ 131, it 

was shown that the Todd class of a simplicial toric variety has a canonical lattice- 

invariant expression as a polynomial in the torus-invariant divisors. This polynomial is 

naturally an element of the Stanley-Reisner ring of the fan, which is isomorphic to the 

equivariant cohomology ring of the toric variety. A reciprocity relation corresponding 

to the addition of a single ray to the fan was given. 
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Theorems 1 and 2 of this paper show that the above polynomial in the rays which 

represents the Todd class may be expressed nicely as a power series in the rays. 

The first equation of Theorem 2 reformulates the reciprocity formula [13, Theorem 31 

in terms of these power series, and extends this reciprocity formula to subdivisions in 

which an arbitrary number of rays are added. In particular, the coefficients of the power 

series t,, which were denoted f (py" , . . . , pp') in [ 131 (where pi are the generators 

of a), are generalizations of the classical Dedekind sum s(p, q). Indeed, if a two- 

dimensional cone CJ is isomorphic to the cone (( l,O), (p, q)) in B2, then we can express 

the coefficient of ~1x2 in the power series to in terms of the classical Dedekind sum 

by the formula q(s( p, q) + i). Moreover, the higher coefficients in the power series f, 

for a two-dimensional cone 0 are also important in number theory. The recent work 

of Solomon [14] examines power series quite similar to these two-dimensional t, in 
relation to zeta functions of real quadratic number fields. This connection is developed 

further in [7]. 

There is also a close link between the formulas of this paper and previous formulas 

of Morelli [9]. Morelli introduced a certain function pk from the set of k-dimensional 

cones in the n-dimensional lattice N to rational functions on the Grassmannian 

GY+~+~(N @ R). He showed that this function is additive and satisfies the relation 

for any complete fan C in N. (In the formula, [V(o)] denotes the closed orbit corre- 

sponding to the cone 0.) This settled an old question of Danilov about the existence 

of such a formula for the Todd class. 

If (T is a simplicial cone of dimension iz, then we can relate s, and ,~(a) as follows: 

Suppose that ~1, . . , u, EM are the primitive linear functionals defining CJ (i.e, the 

primitive generators of the dual cone 6.) Define 

r, = s,(u,, . . .,U,). 

We then have 

Proposition 4. For any n-dimensional simplicial cone 0, ,u,,(a) is exactly the degree 
0 part of r,. 

Proof. For nonsingular a, this is a consequence of Morelli’s construction of .LL,,, for 

he gives pn in terms of the Todd polynomials as 

PAa) = 
&(ui,...,u,) 

u, . . ‘U, ’ 

which agrees with the degree 0 part of the second equation of Theorem 2. For general a, 

the proposition follows from additivity of both expressions: Theorem 2 implies that the 

function sending a to r, is additive. 0 
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Indeed, the same reasoning can be used to show that Morelli’s &(rr) coincides 

with our S&U, t, . . . , unt). Thus, the above theorems establish a link between Morelli’s 

formulas and the Todd class formulas of [12, 131, as well as linking Morelli’s formulas 

with generalized Dedekind sums. 

2. A Todd class formula 

In this section, we give the proofs of Theorems 1 and 2, which provide a recipe for 

computing the Todd class of a simplicial toric variety given a nonsingular subdivision 

of the fan. 

Let us consider Theorem 1 first. Given a lattice N, the existence of a canonical 

assignment of power series tb to the n-dimensional simplicial cones CT in N follows 

from Theorem 1 of [ 131. This theorem asserts that the Todd class of a simplicial toric 

variety has a canonical expression as a polynomial in the torus-invariant divisors with 

rational coefficients: 

Cf( P;2’ 2 . ’ ., P~wPlr’ . . . ~w/cNak, 

with the sum taken over all tuples of rays of C and all multiplicities ai > 0. 

We may then define to for an n-dimensional cone e = (pt , . . , pn) to be the power 

series 

t,(x I,..., x,) = Cf(p’t’,... ,p,““)xf’ ...x,” 

taken over all nonnegative integers at,. . . , a,,. 

With this definition, the assertions of Theorem 1 follow immediately, with the ex- 

ception of the claim that the above power series is always a rational function of xi, exj, 

i = 1,. . . ,n. This, however, will follow from Theorem 2. 

Theorem 2 is proved by induction using the following lemma which states the be- 

havior of the t, under a subdivision obtained by adding a single ray. This formula is 

essentially a restatement of Theorem 2 of [ 131 in terms of power series. 

Lemma 5. Let cr = (p,, . . . , p,,) be an n-dimensional simplicial cone, and let po E 
int(pl,..., pd). For i=l,..., d, let oi=(po )...) bi )...) pn), mi=mttltai, and let mo= 
-mult (T, so that mop0 + rnlpl + . . . $ mdpd = 0. Then 

t&1 ,...,xn)= -sxi,xl - ?Xi ,..., xd - mdxi,xd+l,...yx, 

mi mi mi 

x (x, _ E+). . .(xi_, _ g::.gi;- YXi). .(xd _ %xi)’ 

where t is the power series whose restriction to oi is to!. 
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Proof. The proof relies on the following push-forward formula, which is a power series 

version of [13, Theorem 21. 

Push-forward formula: Let C be a complete simplicial fan in a lattice N. Let ~1,. . . , pr 

denote the rays of C. Suppose that G = (~1,. ..,pd)~C, and let poEint(pl,..., pd). 
Let .?I’ be the fan obtained from C by adding the ray po, and let n :Xz, -& be 
the induced map of toric varieties. For i = 1,. . , d, let a; = (PO,. . . , pi,. . , pn) and 

mi =mdt Gi. Let mo = -mUlt u SO that mop0 i- rnlpl $ . . . f mdpd = 0. For any i = 

1,. . , d, let Xi denote [ V(pi)]/mi E A’Xz @ Q, and for i > d let Xi = [ V(pi)]. Similarly, 
define classes K E A’Xzr @ &p by & = [ V(pi)]/mi for i = 0,. . . , d, and K = [V(pi)] for 
i > d. Then for any polynomial P, we have 

x, . ..&...Xd 

‘(xl -x,)...(x, -x,)-(& -xi)’ 

(In particular the right-hand side is always a polynomial in the X’s. ) 

Proof of the push-forward formula: Let Xs = 0. We have the following identities: 

(i) For i > d, and any polynomial Q, 

~*(ylQ(Yo,. . ., Yr)) = x~*(Q(yo,~~ 9 r,)). 

(ii) For any k,j E (0,. . , d}, and any polynomial Q, we have 

n*((r, - r;)QVo,. . ., yr)) = (& - Xj)~*(Q(YO,. . . > Yr)). 

These identities follow, respectively, from [13, Theorem 21 (Part B) and the lemma 

used in the proof of this theorem. 

By (i), we may assume that P is a polynomial in Yo, . . . , Yd, and by linearity, we as- 

sume P is a monomial. We will prove the equation of the theorem by induction on 

C, the number of coincidences in the monomial P: C =degP-# {nonzero exponents 

in P}. By (ii), 

and it is easy to check that if the equation of Theorem 6 holds for both summands on 

the right-hand side above, it must also hold for the left-hand side. The above equation 

allows us to reduce inductively to the case C = 0, which may be checked using the 

relations 

n*(Y()... Yd-,) =& ” .& and n,(Yt ...Yl) =& ...Xj 



J. E. Pommersheim I Journal of Pure and Applied Algebra 117 & 118 (1997) 519-533 529 

for 1 -c d, together with the algebraic identities: 

r  ̂

c . ‘Z, 

r=, (z, _z,).zl.~z~z:;,)_..(~i -z,) = lv 
r 

c 
i=l 

1 
r = 0. 

(z, -zi)~~~(z~-zj)~~~(z~-~~) 

This completes the proof of the push-forward formula. 

It is now quite easy to prove Lemma 5. First, we note that with the change of 

variables: 

yc = miYi and xi = miXI, 

we can rewrite the equation of the push-forward formula as 

~*Q(Yo> . . ’ > JJ,)=~Q (-~X~,XI -:Xi,...,xd - md 
-xirxd+l,...,xr 

i=l 
I t ml > 

for any polynomial Q. In this equation, xi and yi represent the torus invariant divisor 

classes (now not scaled by multiplicities) on Xz and Xx!, respectively. 

Now by construction of the t,, these functions are compatible with the above push- 

forward formula. (Indeed the function f of [13] was defined in this way.) Thus, the 

above equation immediately implies Lemma 5. 0 

We now finish the proof of Theorem 2. We first remark that the changes of coordi- 

nates appearing in the statement of the theorem are natural in the following sense: 

Claim 6. Given three n-dimensional simplicial cones 0, y, and 6, 

A LT,b = Ap,bA7,y. 

Proof. Let 6 be generated by PI,. . . , fin, and let ~1,. . . , u,, be the basis dual to pi,. . , &. 

Comparing i, j-entries, we wish to show that 

So it is enough to show 

Uj = 2 (Ui$k)wk. 
k=l 

But this follows from the fact that either side paired with tl yields (u,,z,). 0 
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To prove Theorem 2, we observe that any two simplicial subdivisions of c are 

equivalent by a sequence of stellar subdivisions (such as those of Lemma 5). Indeed, 

any fan may be desingularized by a sequence of such stellar operations (cf. [4]), and 

a theorem of Morelli [lo] (proved also by Wlodarczyk, though not published) im- 

plies that any two nonsingular fans with the same support are connected by such 

a sequence. Thus, to prove Theorem 2, it suffices to show that if r is a simpli- 

cial subdivision of 0 and we add a ray p. c CJ to form a new subdivision r’, then 

if the equation of the theorem holds for r, it holds also for r’, and 

conversely. 

Fix a cone y E E The addition of the new ray po subdivides y into a number of 

maximal cones 71, . . , yr of P (possibly r = 1). If we apply Lemma 5 to this situation, 

we obtain 

sy(Y) = .&(4,y, y>. 

This follows by checking that the changes of coordinates in Lemma 5 really coincide 

with those given by Theorem 2 in the case that a single ray is added. 

But now if we change variables by letting Y =A,$, and sum over all cones y E K 

we obtain 

YE&i,, Y'ET(L, 

Hence, by Claim 6, we conclude that 

This implies immediately that the equation of the theorem holds for r if and only if 

it holds for r’. The proof of Theorem 2 is complete. 

3. The Todd class and Barvinok subdivisions 

The purpose of this section is to prove Theorem 3 which states the behavior of the 

functions to under virtual subdivisions. 

Theorem 3 will follow from Lemma 7 below which describes the behavior of the 

s, under a virtual subdivision induced by the addition of a single ray. The proof that 

Lemma 7 implies Theorem 3 is similar to the proof in the preceding section that 

Theorem 2 follows from Lemma 5. 

Lemma 7. Let o = (PI,. . . , p,,) be an n-dimensional simplicial cone, and let po be any 

ray such that PO,. . . , p,, are contained in a half-space. Let rno = --m&t CT and suppose 

po is in the d-plane dejined by ~1, , . . , pd, with cfTo mipi = 0, as above, and all mi # 0 
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for i=l,...,d. Let 

d 

G= 
c 6iol 

i=l 

be the virtual subdivision r SO obtained. (So that now we have mi = 6i mult ai.) Then 

with these sign changes, the formula of Lemma 5 holds for the virtual subdivision l-1 

Proof. Let ~0,. . , p,, be as in the statement of the lemma. By reordering, let us assume 

that 

6 I,..., 6,=-l and &+I ,... &xl. 

Set 60 = - 1. We then have 

Vii = 6i mult ai 

for all i = 0, . . . , d. 

Let /3 be the ray defined by the primitive element of N lying in the one-dimensional 

cone 

(PO, . ..>pr) n (Pr+l,...,Pd). 

Let K denote the convex hull 

K = conv{po,pl,...,p,). 

We introduce two fans C- and C+ with support K. C- and P have the following 

sets of maximal cones: 

CC) = {%Q,...,O,}, n c&, = {&+l,...,gd}. 

For iE{O ,..., r}, and jE{r+l,..., d}, define a cone 

Olj = (B,PO,...,~r,...,~jj,...,Pn), 

and let C be the fan whose set of maximal cones is 

Cc,) = {oiJiE{O ,..., r} andjE{r+ l,..., d}}. 

Then C is a common refinement of C- and Z+, so that we have natural maps 

a- :x, --t x,-, 7c+ :x1 + A&+. 

In fact, C may be obtained from either C- or C+ by adding the single ray B. 
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Let us fix i E { 0,. . . , r}. Then the cone oi is subdivided into the cones 

{gijlj E {r+ l,...,d}} 

of C. Applying Lemma 5 to this situation we get, with the notation of Section 2 and 

with Y=(yo ,..., ji ,..., y,), 

J=r+l 

and therefore with the change of variables Y = A,, X, we obtain 

~g{(Ao,o,X) = e ~,,,&z,&o,~,X), 
j=r+l 

which by Claim 6 reduces to 

Similarly, for each j E {r + 1,. . . ,d}, we get 

i=o 

Now we sum this equation over all j E {r + 1,. . . ,d} and the previous equation over 

all i E (0,. . . , r}. Since the right-hand sides are identical after interchanging the order 

of summation, we may set the left-hand sides equal and obtain 

d 

i=o j=r+ I 

And since A,, is the identity, we may rewrite this as 

d 

i=l 

which is the content of the lemma. 0 
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